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We describe the probabilistic study of a hidden variable model in which the
origin of the quantum probability is due to fluctuations of the internal state of
the measuring apparatus. By varying the intensity of these fluctuations from zero
to a maximal value, we describe in a heuristic manner the transition from classical
behavior to quantum behavior. We characterize this transition in terms of the
Accardi ±Fedullo inequalities. This is a review article in which we gather our
recent contributions to the subject, most of which have not been published in
article form.

1. INTRODUCTION

In this article we present a probabilistic study of a model with two

possible outcomes related to each measurement which allows a quantum

mechanical as well as a classical description (see Section 2). Whenever we

use the words classical or quantum, we mean that the probabilities related

to a measurement are the same as those that can be computed by these

respective theories. For example, the quantum probability of our model is
the same as the transition probability of a Stern±Gerlach measurement on a

spin-1/2 particle. For the classical case we have to distinguish between the

deterministic case and the Kolmogorovian case. We will say deterministic

whenever the probabilities of the model are either 0 or 1, and Kolmogorovian

when the probabilities are regarded as a measure on a s -algebra of subsets
of the sample space (this point will be made more precise later).

Our model is able to reproduce the quantum mechanical transition proba-

bilities by assuming that there is a lack of knowledge about the interaction

between the system that we study and the measurement apparatus. By intro-
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ducing a parameter e , we can change the magnitude of this lack of knowledge.

If this lack of knowledge about the interaction is absent, we recover the

deterministic case. To recover the Kolmogorovi an probabilities, we introduce
Aerts’ definition of a conditional probability. If we look at the Aerts condi-

tional probabilities that arise when there is no lack of knowledge about the

interaction (the deterministic case), we recover the Kolmogorovian case.

We have studied the intermediate behavior of this model within various

frameworks such as the lattice-theoretic approach (D. Aerts and Durt, 1994a;

Durt, 1996a; D. Aerts et al., 1997), the algebraic approach (D. Aerts and
D’ Hooghe, 1996) and the probabilistic approach (S. Aerts, 1994, 1996, 1998;

LeÂveÃque, 1995; Durt, 1996a). In this approach, we examine the transition

and conditional probabilities associated with our model with the help of the

Accardi±Fedullo inequalities. These inequalities (see Section 3) express the

existence of a Kolmogorovi an model or of a Hilbert space model for a triple

of probabilities. If we apply these inequalities to the transition probability
deduced from the e model, the result is simple (see Section 4), but rather

surprising (Durt, 1996a): no Kolmogorovian model exists for the transition

probability, neither in the deterministic situation nor in the quantum nor any

intermediate situation; no Hilbert space model exists except for the quantum

case. In the case of the Aerts conditional probability defined in Section 5,
we show that we do have perfect agreement between the Accardi±Fedullo

classification and ours: the conditional probability admits a Kolmogorovi an

model in the classical limit and a Hilbert space model in the quantum limit.

These cases are also limiting cases for the Accardi±Fedullo inequalities

because the conditional probabilities associated with the respective limiting

cases saturate the corresponding inequalities and violate them in neighboring
intermediate cases (Durt, 1996a).

In Section 6, we generalize the model to what we call the h - e -model,

and discuss the classical limit in this context. In particular we show, following

LeÂveÃque (1995), that we must replace the Kolmogorovi an model defined by

Accardi and Fedullo by a generalized Kolmogorovian model, and that the

existence of such a model is expressed by three inequalities instead of four
as in the Accardi±Fedullo theorem. We show that the h - e model fulfills this

reduced set of inequalities.

2. THE e MODEL

As stated in the introduction, the e -model covers a very broad spectrum
of probabilities for experiments with only two possible outcomes, i.e., a

yes±no experiment or a spin measurement of a spin-1/2 particle (e.g., the

electron). Let us take the example of the spin measurement as our generic

quantum experiment and neglect all other properties that the electron might
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have. We know that the state of a spin-1/2 particle can be expressed as a

superposition of a spin-up and a spin-down state along an a priori direction

z: | c & 5 a | 1 & 1 b | 2 & . In the e -model, the states of the system that we wish
to study are represented as points on the unit sphere. That the set of points

on the unit sphere covers all possible spin-1/2 states of the two-dimensional

Hilbert space is demonstrated by the Pauli mapping, which maps bijectively

the set of physical states onto the unit 3-sphere: | c & ®
-

n 5
(2 Re a * b , 2 Im a * b , | a | 2 2 | b | 2) (in Cartesian coordinates) and conversely

a 5 cos( u /2)e 2 i w /2, b 5 sin( u /2)ei w /2, where u , w are the polar angles of
-

n .

2.1. Guiding Principles of the e -Model

We want to introduce the e -model independently of the physical theories

of quantum mechanics and classical mechanics, because we want to make

statements about these theories and hence need this independence. At the
same time we do not want to introduce the e -model in a purely formal way,

since then it could be thought that it can be realized just as a formal structure.

To show that the probability structure that we find in the e -model (which

will contain quantum probability and classical probability as special cases,

but also generates a structure that is neither quantum not classical) can
correspond to `real’ probabilities, appearing in our reality as a limit of the

relative frequency of repeated experiments on systems prepared in an identical

way, we introduce the e -model by means of a simple mechanical model of

which the functioningÐ as will be explained in this sectionÐ generates this

probability structure.

In order to introduce our e -model we need three basic concepts: states
to characterize the entity we wish to study, measurements that can be applied

to this state in order to gain information about the state, and a rule that tells

us how the state transforms upon measurement and how to assign the outcome

of a measurement when it is applied to a certain state. The set of states S
that characterizes the property we wish to measure consists of the points of

the unit sphere. To represent a state we shall write pv , where v denotes the
unit vector that represents the state of the entity at the moment of measure-

ment: S 5 {pv | v is on the unit sphere}. For each point u on the sphere, we

introduce the following experiment e ø . We consider the diametrically oppo-

site point 2 u, and install an elastic band of length 2 such that it is fixed with

one of its endpoints at u and the other endpoint at 2 u (see Fig. 1). The

elastic band will be called ª e -elasticº because it consists of two different
parts: an unbreakable part [ 2 1, 2 e [ ø ] 1 e , 1 1] and a breakable part [ 2 e ,

1 e ], with e P [0, 1]. Once the e -elastic is installed, the state pv is projected

from its original place v orthogonally onto the wire and sticks on it. Then

the e -elastic breaks and the state attached to either one of the two parts is
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Fig. 1. A representation of the e -model and the experiment. The elastic breaks uniformly inside

the interval [ 2 e , 1 e ], and is unbreakable outside this interval, at the points of the set [ 2 1,

2 e [ ø ] 1 e , 1].

`dragged’ to one of the two endpoints u or 2 u. Depending on whether the

state pv ends up at u or at 2 u, we give the outcome o u
1 or o u

2 to eu and the

state transforms correspondingly to either p 1 u or p 2 u. We can easily calculate

the probabilities corresponding to the two possible outcomes. The state pv is
transformed into the state pu when the elastic part breaks at a point of the

interval L1 5 [ 2 e , u ? v] (which is the length of the piece of the elastic

between 2 u and the point onto which the state was projected), and arrives

at 2 u when it breaks at a point of the interval L2 5 ]u ? v, 1 e ]. We make

the hypothesis that the elastic breaks in a uniform way, which means that
the probability that the state pv is transformed to the state pu is given by the

length of L1 (which is e 1 cos u ) divided by the total length of the elastic

(which is 2 e ). The probability that the state pv is transformed into the state

p 2 u is the length of L2 (which is e 2 cos u ) divided by the total length of

the elastic. To summarize, we have:

(1) v ? u # 2 e . The state pv is projected onto the lower part of the e -
elastic, and any breaking of the elastic will transform it into the state p 2 u.

We have P (o u
1, pv) 5 0 and P (o u

2, pv) 5 1.

(2) 2 e , v ? u , e . The state pv is projected onto the breakable part

of the e -elastic. We can easily calculate the transition probabilities and find

P (o u
1, pv) 5

1

2 e
(v ? u 1 e )

P (o u
2, pv) 5

1

2 e
( e 2 v ? u)

(3) e # v ? u. The state pv is projected onto the upper, unbreakable part

of the e -elastic, and any breaking of the elastic will pull it upward such that

it arrives at u. We have P (o u
1, pv) 5 1 and P (o u

2, pv) 5 0.
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3. STATISTICAL INEQUALITIES AS CONDITIONS OF
REPRESENTABILITY

More than a century ago, George Boole (Boole, 1862), the founder of
modern logic, wrote:

Let p1, p2, . . . , pn represent the probabilities given in the data. As these will in

general not be the probabilities of unconnected events, they will be subject to

other conditions than that of being positive. . . Those other conditions will, as

will hereafter be shown, be capable of expressions by equations or in equations

reducible to the general form: a1 . p1 1 a2 . p2 1 . . . 1 an . pn 1 a $ 0, a1,

. . . , an , a being numerical constants which differ for the different conditions in

question. These, together with the former, may be termed conditions of possible

experience. When satisfied they indicate that the data may have, when not satisfied

they indicate that the data cannot have resulted from an actual observation.

More than half a century later the mathematician Bonferroni (Gallambos and

Simonelli, 1996) would construct specific instances of such inequalities that
are now known as Bonferroni inequalities. The inequalities arise because of

the mathematical structure of classical probability, where probabilities are

regarded as measures on a s -algebra of subsets of a set called the event

space. It is ultimately the logic of sets which dictates the constraints of

classical (or what we now call Kolmogorovian) probability theory. The first
to realize that, because of the vector space structure of Hilbert space and the

specific form of the transition probability as the squared modulus of an inner

product, the quantum mechanical probabilities are also bound by inequalities

was Bogdan Mielnik (Mielnik, 1968). So we have the following situation:

probabilities from quantum mechanics and Kolmogorovian probability theory

both have to comply with constraints. In both situations the constraint is
expressible as an inequality or a set of inequalities, but the specific form of

the inequalities depends on the axioms that lead to the inequalities (classical

or quantum). That is why we prefer to label the inequalities as ª conditions

of representabilityº rather than ª conditions of possible existence.º In 1982,

Accardi and Fedullo generalized Mielnik’ s work by deducing inequalities

which express whether a set of data can be represented by a real or a complex
Hilbert space. The fact that one can distinguish not only between a classical

and a quantum probabilistic model underlying the data, but even between a

real and a complex Hilbert space shows the resolvent power of this technique.

Accardi and Fedullo also derived ª classicalº inequalities to reveal the exis-

tence of a Kolmogorovian model for conditional probabilities and showed

that the quantum probabilities do not admit such a model. The ª classicalº
inequalities of Accardi and Fedullo are in fact a direct generalization of

the Gutkowski ±Masotto inequalities (Gutkowski and Masotto, 1972), which

themselves can be shown to be equivalent to Bell’ s inequality (Corleo et
al., 1975). In 1989, Pitowski showed the equivalence between generalized
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ª classicalº inequalities and Clauser±Horne inequalities, a variant of Bell’s

inequalities particularly well adapted to the experimental situation in which

violations occur. Because we will make extensive use of the Accardi±Fedullo
inequalities, we shall now present a summary of their work. Then we shall

apply these results to the e -model.

3.1. The Kolmogorovian Model for Three Conditional Probabilities

Let us consider three dichotomic experiments A, B, C, with the outcomes
A+, A 2 , B+, B 2 , C 2 , C+. Let us introduce the shorthand notation P (X+ | Y+)

for the conditional probability P (X 5 X+ | Y 5 Y+) of getting the result X+

when measuring the observable X, when the obervable Y is known to take

the outcome Y+. We can construct 36 conditional probabilities among these

six possible outcomes, of which 24 are a priori unknown because the require-

ment of dichotomy implies that P (X+ | X 2 ) 5 P (X 2 | X+) 5 0 5 1 2 P (X+ | X+)
5 1 2 P (X 2 | X 2 ).

The conditional probabilities are said to admit a Kolmogorovi an

model iff :

(i) There exists a probability space that is characterized by a triple ( V ,

S , m ) where V is a nonempty set, S the s -algebra of subsets of V , and m
a probability measure on S .

(ii) For each observable, there exists a measurable partition of V (for

instance, for A, we have A+, A 2 : A+ ù A 2 5 é , A+ ø A 2 5 V ).

(iii) The conditional probability is given by the Bayes formula: P (A+ | B+)

5 m (A+ ù B+)/ m (B+).

The criterion for the existence of a Kolmogorovian model is the content
of a theorem of Accardi and Fedullo (1982):

Theorem 1. If the conditional probability is symmetrical [P (A+ | B+) 5
P (B+ | A+), P (A 2 | B+) 5 P (B+ | A 2 ) . . .], it admits a Kolmogorovian model iff

the three conditional probabilities p, q, r [respectively P (A | B), P (B | C ),

P (C | A )] fulfill the inequalities

| p 1 q 2 1 | # r # 1 2 | p 2 q | (1)

Comments. (a) If the probability is symmetrical, the three conditional

probabilities p, q, r define the whole set of probabilities. For instance,

P (B+ | A 2 ) 5 P (A 2 | B+) 5 1 2 P (A+ | B+) 5 1 2 P (B+ | A+) 5 P (B 2 | A+) 5
P (A+ | B 2 ) 5 1 2 p and P (B+ | A+) 5 P (A+ | B+) 5 1 2 P (A+ | B 2 ) 5 1 2 (1
2 P (A 2 | B 2 )) 5 P (A 2 | B 2 ) 5 P (B 2 | A 2 ) 5 p.

(b) Apparently, the inequalities of Accardi±Fedullo seem to privilege

one probability (r), but this is only a formal appearance: the inequalities are

in fact invariant under any permutation of the triplet ( p, q, r).
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3.2. The Hilbert Space Model

We shall again consider the triplet of conditional probabilities ( p, q, r),
which allows us to define completely the 24 conditional probabilities when

they are symmetrical, as we saw before. These probabilities are said to admit

a Hilbert space representation iff there exist three normalized vectors (states)

A+, B+, C+ of a two-dimensional Hilbert space such that p 5 | ^ A+ | B+ & | 2, q 5
| ^ B+ | C+ & | 2. r 5 | ^ A+ | C+ & | 2, where | ^ A+ | B+ & | 2 is the squared modulus of the
Hilbert scalar product between the states A+ and B+. Note that the requirement

of symmetry is automatically fulfilled, because of the symmetry of the inner

product in Hilbert space. With A 2 , B 2 , C 2 we can associate vectors of the

Hilbert space orthogonal to A+, B+, C+ so that we recover the complementary

probabilities. We are in accordance with the axioms of quantum mechanics,

which tell us that two eigenstates corresponding to different results of the
same observable are necessarily orthogonal.

The possibility of existence of a Hilbert space model is the object of a

second theorem (Mielnik, 1968; Accardi and Fedullo, 1982):

Theorem 2. If the conditional probability is symmetrical, it admits a
Hilbert space model iff the three conditional probabilities p, q, r [respectively

P (A+ | B+), P (B+ | C+), P (C+ | A+)] fulfill the inequalities

( ! pq 2 ! (1 2 p)(1 2 q))2 # r # ( ! pq 1 ! (1 2 p)(1 2 q))2 (2)

An important corollary is that the inequalities for the existence of a Kolmogor-

ovian model are stronger than the inequalities related to a Hilbert space

model, in the sense that whenever the first are fulfilled, the second are

fulfilled, too. This is a consequence of the following inequalities:

( ! pq 2 ! (1 2 p) (1 2 q))2 # | p 1 q 2 1 |

1 2 | p 2 q | # ( ! pq 1 ! (1 2 p) (1 2 q))2 (3)

We thus have the following situation: The three conditional probabilities ( p,

q, r) define a point in the unit cube [0, 1] 3 [0, 1] 3 [0, 1]. Let us call the

classical zone the set of triplets ( p, q, r) satisfying the classical inequalities

(as defined in theorem 1); then, all the triplets of the classical zone admit a

Kolmogorovian model. Let us call the quantum zone the set of triplets ( p,

q, r) satisfying the quantum inequalities (as defined in Theorem 2); then, all
the triplets of the quantum zone admit a Hilbert space model. The classical

zone is included in the quantum zone. Note that the quantum zone does

not cover the cube. The triplet (0.99, 0.99, 0.9) for instance, violates the

quantum inequalities.
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4. THE ACCARDI ± FEDULLO INEQUALITIES AND THE
e -MODEL

We shall analyze in this section the transition probability related to the
e -model in terms of the Accardi±Fedullo inequalities and discuss whether it
admits a Kolmogorovian model or a Hilbert space model.

As we saw in the previous section, the probability of occurrence of the

result ª spin upº for a measurement when u is the angle between the direction

labeled A+ of the measuring apparatus and the state as represented on the

PoincareÂsphere B+ is 1 when cos u . e , 0 when cos u , 2 e , and intermediate

in between. Note that when e 5 0, then P( u ) 5 cos2( u /2), the quantum
probability. The e -transition probability is symmetrical in the angle between

A+ and B+, that is, P(A+ | B+) 5 P(B+ | A+). The following theorem characterizes

the probability P(A+ | B+) in terms of the Accardi±Fedullo inequalities

(Durt, 1996a):

Theorem 3. The P transition probability does not admit a Hilbert space

model unless e 5 1 (the quantum case). It never admits a Kolmogorovian

model.

Proof. If e Þ 1, then it is always possible to find three states (we identify

a state with a point of the sphere) A, B, C such that P(A+ | B+) 5 P(B+ | C+) 5
1, P(A+ | C+) Þ 1. Identify A+, B+, and C+ with three points of the same great

circle on the sphere, the angle between A+ and B+ smaller than but nearly

equal to arccos e [so P(A+ | B+) 5 1], and the angle between C+ and A+ larger
than, but nearly equal to arccos e [so P(A+ | C+) Þ 1], so that the angle between

B+ and C+ is smaller than arccos e [so P(B+ | C+) 5 1]. If we identify p, q, r
with P (A+ | B+), P (B+ | C+), P (A+ | C+), and replace p and q by 1 in the inequality

( ! pq 2 ! (1 2 p) (1 2 q))2 # r # ( ! pq 1 ! (1 2 p) (1 2 q))2, we obtain

1 # r # 1, so r 5 1. But here r 5 P (A+ | C+) Þ 1, so that we violate the

inequalities of Accardi±Fedullo. Thus, the e -probability admits no Hilbert

space model (and a fortiori no Kolmogorovian model) in this case. It is
obvious that in the quantum case the probability admits a Hilbert space model.

This is straightforward after identification of the points of the sphere and

their image under the Pauli mapping. As a corollary, the e -probability does

not admit a Kolmogorovian model unless perhaps if e 5 1 (the quantum

case). But even then, as was already noticed by Accardi and Fedullo, it does

not admit such a model. To show this, take the following choice for A, B,
C: identify A+, B+, C+ with three points belonging to the same great circle,

the angle between A+ and B+ equal to p /3, between B+ and C+ also equal to

p /3, but between C+ and A+ equal to 2 p /3. Then p 5 3/4, q 5 3/4, r 5
1/4, and the first inequalities, necessary for the existence of a Kolmogorovian
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model, are violated. For instance, | p 1 q 2 1 | 5 1/2 ñ 1/4 5 r, in contradiction

with the required inequality.

The proof presented here utilizes the inequalities of Accardi and Fedullo
in the particular case where two of the conditional probabilities are equal to

one. In this case the possibility of existence of a Kolmogorovian model, as

well as of a Hilbert space model, expressed by the Accardi±Fedullo inequali-

ties implies that the third conditional probability equals one. We shall give

here a direct and intuitive explanation of this condition, without employing

the inequalities (D. Aerts and Durt, 1994b). First we assume that the triplet
admits a Kolmogorovian representation and denote by A+ that subset of the

event space that corresponds to the outcome A+ for observable A. We notice

that, if P(A+ | B+) 5 1, then m (A+ ù B+) 5 m (A+), so that A+ , B+, up to

subsets of V of null measure. The symmetry of the conditional probability

implies that B+ , A+, up to subsets of V of null measure by a similar

argument. But then A+ 5 B+ up to subsets of V of null measure. Similarly,
P(B+ | C+) 5 1 implies that B+ 5 C+ up to subsets of V of null measure. But

then, A+ 5 C+ up to subsets of V of null measure. In this case, P(A+ | C+)

5 1. Next assume that the triplet of probabilities admits a Hilbert space

representation. If P(A+ | B+) 5 1, then there exist two normalized vectors A+,

B+ of a two-dimensional Hilbert space of which the modulus of the inner
product is one. This implies that A+ 5 B+ up to a physically irrelevant phase.

Similarly, P(B+ | C+) 5 1 implies that C+ 5 B+ up to a physically irrelevant

phase. Then, A+ 5 C+ up to a physically irrelevant phase, and P(A+ | C+) 5 1.

5. THE CONDITIONAL PROBABILITY

Accardi introduces, as is usual in classical probability theory, the condi-

tional probability by means of the Bayes axiom. Although the Bayes axiom

takes a central place in Kolmogorovian probability theory, it is a nonopera-

tional definition for noncompatible observables because the observables do

not take their values simultaneously. Still, it will be clear that the preparation
of a state inside a given subset of the set of states can be regarded as a kind

of conditioning for any consecutive measurement. Following D. Aerts (1995),

we propose a natural extension of the concept of conditional probability that

is operational both in the quantum and in the classical regime.

Definition. The conditional probability Pcond(X 5 x | Y 5 y) is the probabil-

ity that a measurement of observable X gives the result x when we know
that if we would choose to measure the observable Y, we would find the

result y with certainty.

It is important to note that the transition probability and the conditional

probability express two different interpretations of conditioning: in the first
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case (the transition probability), the condition ª B is fulfilledº means that the

initial state is B+; in the second case (the conditional probability), the condition

ª B is fulfilledº means that if an experiment would be performed with a measur-
ing apparatus along the direction B, we would find with certainty the result B+.

Although the attentive reader might have anticipated this, we will later show

how this definition reduces to the transition probability in the quantum case and

to the standard conditional probability in the classical case. In the intermediate

cases they are different, so we will write Pcond for the conditional probability as

defined above, with no subscript for the transition probability.

5.1. The Conditional Probability of the e -Model

Let us denote by eig{A} the set of states on the sphere that, upon
measurement, all lead to the result A+ with certainty, and likewise for B. In

the case of our model eig{B} equals the spherical sector of angular opening

2 arccos e around B. The definition of conditioning as given above now

simply means that the possible set of states upon which is conditioned equals

eig{B}. Therefore we must integrate the e -transition probability P(A | C ) with

C belonging to eig{B} to obtain the conditional probability Pcond(A | B). To
normalize the result, we divide by 2 p (1 2 e ), the surface of this sector. The

actual integral can be calculated thanks to a judicious application of Gauss’

theorem and of spherical trigonometry. Since this has been published (S.

Aerts, 1996) we shall not repeat the calculation. Because we shall make use

of it, let us show the final result, which is the expression of the conditional
probability as a function of the angle u between A and B, for each value of e :

Pcond( u , e ) 5 p1( u , e ) ? H 1 e 2 cos
u
2 2 1 H 1 e 2 sin

u
2 2 ? p2( u , e )

? H 1 cos
u
2

2 e 2 1 p3( u , e ) ? H 1 sin
u
2

2 e 2
where H (x) is the Heaviside function and

p1( u , e ) 5
cos u (1 1 e )

4 e
1

1

2

p2( u , e ) 5 p1( u , e ) 1
1

2
1

v (u, w)

4 p (1 2 e )
1

cos u 1 1

4 p e (1 2 e )
? s (u, w)

p3( u , e ) 5 p1( u , e ) 1
v (u, w) 2 v ( 2 u, w)

4 p (1 2 e )

1
(cos u 2 1) ? s ( 2 u, w) 1 (cos u 1 1) ? s (u, w)

4 p e (1 2 e )
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where

v ( u , e ) 5 4 e arccos ! 1 2 ( e /cos ( u /2))2

1 2 e 2 2 4 arcsin 1 sin( u /2)

! (1 2 e 2 2
and

s ( u , e ) 5 e tg
u
2 ! 1 2 1 e

cos( u /2) 2
2

2 (1 2 e 2) arccos 1 e tg( u /2)

! 1 2 e 2 2
It is easy to show (S. Aerts, 1996) that if we set e 5 1, we find

Pcond ( u , e 5 1) 5 cos2( u /2)

which is the well-known quantum mechanical transition probability:
Pcond( u , e 5 1) 5 P (A+ | B+).

If, on the other hand, we take the classical limit ( e equal to zero), the

conditional probability becomes

Pcond ( u , e 5 0) 5
p 2 u

p

Now suppose one is asked for the probability that the system would be found

in the upper half of the sphere (eig{A}) when we know for certain that its

state belongs to eig{B}. If one would apply Bayes’ axiom with a uniform

probability measure m , one would come up with the following result:

m (eig{A} ù eig {B})

m (eig{B})
5

p 2 u
p

which is exactly the result stated above.

5.2. The Conditional Probability and the AccardiÐ Fedullo
Inequalities

To check if the inequalities of Accardi and Fedullo are fulfilled, we
must consider all triples of points on the sphere, determine their relative

angles, replace the values of these angles in the expression of the conditional

probability, and finally implement these values in the inequalities of Accardi

and Fedullo. This work was performed by LeÂveÃque (1995). We reproduce

here some results that he obtained. He showed numerically that the quantum

probability is ª isolatedº : It naturally admits a Hilbert space model, but any
conditional probability associated with values of e in the vicinity of 1 (the

quantum case) does not admit a Hilbert space model, and as a consequence

there does not exist a Kolmogorov ian model. He showed also that the classical

probability ( u sup 5 0) is ª isolatedº : It admits a Kolmogorovi an model, but
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the conditional probability with values of e in the vicinity of 0 (the classical

case) does not admit a Kolmogorovian model. Remark that this is not true

for the Hilbert space model: there exists a broad zone surrounding the classical
zone for which the conditional probability admits a Hilbert space model. To

show this is rather technical, and requires the use of a computer, so that it

would be tedious to describe it in detail here. Furthermore, for a rigorous

proof of these results, a computer is certainly less convincing than purely

analytical results, especially for the limiting cases, where infinite precision

is required. Durt (1996) proved the following proportions about the classical
and the quantum limits:

(i) The conditional probability violates the inequalities related to the

existence of a Hilbert space model for all values of e inside an open interval

upper bounded by 1 (the quantum case); when e 5 1, the inequalities are

saturated.

(ii) The conditional probability violates the inequalities related to the
existence of a Kolmogorov ian model for all values of e inside an open

interval lower bounded by 0 (the classical case); when e 5 0, the inequalities

are saturated.

We reproduce here the proof of the first proposition and give a new

proof of proposition (ii). Before making the characterization of the conditional
probability obtained here in terms of the Accardi±Fedullo inequalities, it is

worth noticing that it is symmetrical: Pcond(A | B) 5 Pcond(B | A ), essentially

because the transition probability P(A | B) depends on the relative angle

between A and B only. It will be useful for the proof of (i) to remark that

when e $ cos( u /2) and e $ sin( u /2), the conditional probability is given by

(see previous subsection)

Pcond ( u ) 5
(1 1 e ) cos u

4 e
1

1

2
(4)

In the quantum case, e yields 1, so e $ cos( u /2) for all values of u and the

conditional probability is equal to the quantum probability, and to the e

transition probability as well:

Pcond( u ) 5
1 1 cos u

2
(5)

Before we prove the second statement (ii), we remark that for u in the

neighborhood of zero, e 2 sin( u /2) . 0 and cos( u /2) 2 e . 0, so that

Pcond ( u ) 5 p2 5 p1 1
1

2
1

v (u, w)

4 p (1 2 e )
1

cos u 1 1

4 p e (1 2 e )
s (u, w)

We shall now show the violation of the inequalities in the neighborhood of

the quantum case.



Classical and Quantum Probability in the e -Model 419

Theorem 4 (Durt, 1996a). For all e P [cos( p /8), 1[, the conditional

probability induced by the symmetrical e -distribution violates the inequalities

related to the existence of a Hilbert space model.

Proof. Let us consider three coplanar points A, B, C such that the angle

between A and B is u and the angle between B and C equals b . Then, the

angle between A and C equals a 2 b or a 1 b . In the quantum case, p 5
P(A | B) 5 P( a ) 5 cos2( a /2), q 5 P(B | C ) 5 cos2( b /2), r 5 P(C | A ) 5 cos2

[( a 1 / 2 b )/2]. If we replace these values in the Accardi±Fedullo inequalities

[ ! pq 2 ! (1 2 p)(1 2 q)]2 # r # [ ! pq 1 ! (1 2 p)(1 2 q)]2 we obtain

|cos( a /2) cos( b /2) | 2 | sin( a /2) sin( b /2)|

# | cos[( a 1 / 2 b )/2] |

# |cos( a /2) cos( b /2) | 1 | sin( a /2) sin( b /2)|

The quantum probability obviously saturates these inequalities.

Beside this, the saturation of the inequalities is in some way maximal
when the points A, B, C are coplanar (LeÂveÃque, 1995). In the quantum case,

this can be shown as follows: choosing A, B, and C as in the previous

example, keeping A and B fixed, we vary C on the circle closing the spherical

sector of opening b around B. When C covers the circle, r covers the interval

[( ! pq 2 ! (1 2 p)(1 2 q))2 ? ( ! pq 1 ! (1 2 p)(1 2 q))2] and reaches its

extrema when A, B, and C are coplanar. Such circles cover the sphere. This
shows that, in the quantum case, the inequalities are not violated and at best

saturated, corresponding to the fact that a Hilbert space model exists in this

case. Let us call a the infimum of the domain of the expression [(1 1 e )

cos u ]/4 e 1 1/2 introduced before: e 5 cos( a /2). When e P [cos( p /8). 1[,

0 , a # p /4. Let us consider three coplanar points A, B, C such that the

angle between A and B is p /4, while the angle between A and C is p /2. In
this case, the angle between B and C equals p /4. When e belongs to the

interval [cos( p /8), 1[, p and q are both equal to

(1 1 e ) cos( p /4)

4 e
1

1

2

while r equals 1/2. If p 5 q, then [ ! pq 2 ! (1 2 p)(1 2 q)]2 # r #
[ ! pq 1 ! (1 2 p)(1 2 q)]2 becomes (2p 2 1)2 # r # 1. As already noticed,

the quantum probability saturates this inequality: if p 5 q 5 cos2( p /8), r 5
cos2( p /4), then (2p 2 1)2 5 r. Now, the conditional probability takes the
same value r as the quantum probability, but takes a value of A strictly

superior to it (and also to 1/2, as can be verified). Because (1 1 e )/4 e is a

decreasing function of e in the interval [0, 1], we have that when e , 1,

Pcond( u ) . (1 1 cos u )/2. The function (2p 2 1)2 is monotonically increasing
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when p $ 1/2, so that the conditional probability violates the inequality for

this choice of A, B, C. As a consequence, it does not admit a Hilbert space

model, and, a fortiori, no Kolmogorovi an model. Concerning the classical
limit, let us prove the following theorem (T. Durt, unpublished proof):

Theorem 5. For e inside the interval ]0, 1/2], the conditional probability
violates the inequalities related to the existence of a Kolmogorovian model.

Proof. When 0 Þ e Þ 1, the conditional probability in the surrounding of
the origin is expressed by the function p2 ( e , u ). A straightforward computation

shows that the first derivative of the conditional probability taken in u 5 0

is equal to

e

2 p ( e 2 1)
? ! 1 1 e

1 2 e

This function tends to zero when e tends to 0 (the classical limit), and remains

larger than 2 1/ p when e P ]0, 1/2]. Furthermore, since the function p2 is

analytical in u for each fixed value of e it can be approximated by a first-
order Taylor series around the origin:

P ( u ) 5 1 1
e

2 p ( e 2 1)
? ! 1 1 e

1 2 e
? u 1 higher order terms.

Pitowski (1982; Gudder, 1984) showed the following lemma, which we

reproduce without proof :

Lemma. Let events be represented by points on the PoincareÂsphere. If

the probability between two points A and B is a symmetrical function of the
angle between them taken to the origin of the sphere [this is the case here],

and the inequalities related to the existence of a Kolmogorovi an model are

fulfilled, the probability function obeys the following inequality:

P ( p /N ) # 1 2 1/N, N 5 1, 2, . . .

Around the origin, this imposes that, for an analytical function P ( u ), the first

derivative in u 5 0 is smaller than or equal to 2 1/ p .

Now, we showed that this first derivative tends to 0 in the vicinity of

the classical limit, proving the theorem.

In the classical case, it can be shown (Durt, 1996a) that the inequalities
related to the existence of a Kolmogorovian model are fulfilled and even

saturated for triplets of coplanar points on the sphere. The fact that a Kolmo-

gorovian model exists in the classical case was already shown in Section 5.1

by direct use of the Bayes axiom.
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6. THE h - e -MODEL AND THE ACCARDI ± FEDULLO
INEQUALITIES

6.1 The h - e -Model

It appeared useful to generalize the model when we characterized the

lattice of properties associated with it, among other reasons to make the
deterministic limit coincident with a Boolean lattice of properties (Aerts and

Durt, 1994a; Durt, 1996a). The h - e -model differs from the e -model already

defined in the second section in one point: in the e -model, we assumed that

the hidden variable f was homogeneously spread over the real interval

[(1 2 e )/2, (1 1 e )/2], while in the h - e -model, we assume that it fluctuates

inside the interval [(1 2 h 2 e )/2, (1 2 h 1 e )/2] (with 0 # e # 1 and e 2 1 #
h # 1 2 e ). The interval of fluctuation is now asymmetric around 1/2, the

departure from the symmetry being measured by the absolute value of the

parameter h . The e -model is in fact a special case of the h - e -model for the

symmetrical distribution ( h 5 0). We introduce two angles u cl,up and u cl,down,

which measure the angular opening of the spherical sectors around A+ and
A 2 in which the probabilities of getting the answer spin up (with the general-

ized magnet pointing along the direction A ) are respectively 1 and 0. We

can now define the h - e distribution. The probability of getting spin up

P(A+ | B+) when the generalized magnet points along the direction A and the

state along B depends on the angle u between A and B as follows:

x P(A+ | B+) is equal to 1 when 0 # u # u cl,up, and equal to 0 when

p $ u $ p 2 u cl,down.

x In between it is a superposition of the two possible results, in a zone

of angular opening u sup. We have then

P(A+ | B+) 5
cos u 1 cos u cl,down

cos u cl,up 1 cos u cl,down

The three angles u sup, u cl,up, u cl,down satisfy the following relations:

cos2( u cl,up/2) 5 (1 2 h 1 e )/2, sin2( u cl,down/2) 5 (1 2 h 2 e )/2, and

u sup 1 u cl,up 1 u cl,down 5 p .

The asymmetry related to the new parameter h implies also that the

directions up and down are not considered equivalently. In the h - e -model,

the probability of getting the answer spin down with the generalized magnet
pointing along the direction A is no longer equal to the probability of getting

the answer spin up with the generalized magnet pointing along the direction

2 A except when h 5 0, which corresponds to the e -model. Effectively, it

can be shown that P(A+ | B+) 5 1 2 P(A 2 | B+) for all directions A, B on the

sphere if and only if h 5 0.
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6.2. The h - e -Model and the Accardi ± Fedullo Inequalities

Concerning the transition probability, it is easy to generalize the theorem
established in section 4, and we have the following theorem (Durt, 1996):

Theorem 6. The h - e -probability does not admit a Hilbert space model

unless e 5 1 (the quantum case). It never admits a Kolmogorovi an model.

With regard to the conditional probability, it is possible to compute it
explicitly (LeÂveÃque, 1995) in generalizing the proof sketched in Section 5.

It would be too tedious to reproduce here the explicit form of the conditional

probability deduced from the h - e -probability so we only reproduce the final

result of the classification established in LeÂveÃque (1995) of the h - e conditional

probability in terms of the Accardi±Fedullo inequalities. They generalize the

results obtained for the e -probability.
(i) The quantum probability is ª isolatedº : it admits a Hilbert space

model, but any h - e conditional probability associated to values of ( u cl,up,

u cl,down) in the vicinity of (0, 0) (the quantum case) admits neither a Hilbert

space model nor (a fortiori) a Kolmogorovian model.

(ii) The classical probability ( u sup 5 0) is ª isolatedº : it admits a Kolmo-
gorovian model (when u cl,up $ u cl,down), but any conditional probability associ-

ated to values of u cl,up, u cl,down in the vicinity of the classical zone does not

admit a Kolmogorovian space model. Remark that this is not true for the

Hilbert space model: there exists a broad zone surrounding the classical zone

for which the conditional probability admits a Hilbert space model, as one

can see in Fig. 1.
(iii) When u cl,up , u cl,down, the h - e conditional probability admits neither

a Hilbert space model nor (a fortiori) a Kolmogorovian model.

This last observation is a new feature of the h - e -model and finds its

origin in the asymmetry between the directions up and down that we discussed

in the remark of the previous subsection. The conditional probability can be

interpreted in terms of mutually exclusive and complementary dichotomic
experiments only when the distribution of the hidden variable is symmetrical

( h 5 0). It can be shown that Pcond (A+ | B+) 5 1 2 Pcond (A 2 | B+) for all

directions A, B on the sphere if and only if h 5 0. This corresponds to the

special case of the e -model studied in the first part of this work. One can

also show (LeÂveÃque, 1995) that Pcond (A+ | B+) 5 1 2 Pcond (A 2 | B+) is an essential

condition for the deduction of the inequality Accardi±Fedullo r $ 2 p 2
q 1 1, as can be verified directly in the proof given in Accardi and Fedullo

(1982). This implicit assumption is not only a sufficient condition for the

deduction of the inequalities, but it is also (to some extent) a necessary

condition, as the two following theorems show (Durt, 1996a):
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Theorem 7. If the conditional probability Pcond (A | B) 5 Pcond ( u ) vanishes

when the angle u between A and B is p , and if it admits a Kolmogorovian

model or a Hilbert space model, then it fulfills the following relation:

" u P [0, p ]: Pcond ( u ) 5 1 2 Pcond ( p 2 u ) (6)

Proof. Let us choose A, B, C coplanar such that the angles between A
and B, between A and C, and between C and B are respectively equal to p ,

u , and p 2 u . Then p 5 Pcond (A | B) 5 0, q 5 Pcond (B | C ) 5 Pcond ( p 2 u ),

r 5 Pcond (A | C ) 5 Pcond ( u ). The Accardi±Fedullo inequalities imply that | q 2
1 | # r # 1 2 | q | in the Kolmogorovian case, and that ( 2 ! 1 2 q)2 # r #
( 1 ! 1 2 q)2 in the Hilbert case. In any case, r 5 1 2 q, proving the theorem.
The conditional probability Pcond (A | B) between two antipodal points A and

B is zero whenever u cl,up # u cl,down because then the transition probability is

zero in the sector of opening u cl,down around the antipodal point, and thus is

also zero in the sector of opening u cl,up around it, on which we integrate to

get the conditional probability. Whenever u cl,up # u cl,down, the previous theorem
thus imposes severe restrictions on the possibility of the existence of a

Kolmogorovian model or a Hilbert space model representing the conditional

probability. They are expressed in the following theorem (Durt, 1996a), which

we reproduce without proof.

Theorem 8. If u cl,up , u cl,down, the conditional probability admits neither
a Kolmogorovian model nor a Hilbert space model.

This corresponds exactly to result (iii) formulated at the beginning of

this subsection, and is in agreement with numerical computations. Remark

that when u cl,up 5 u cl,down ( h 5 0), the conditional probability obeys

" u P [0, p ]: Pcond ( u ) 5 1 2 Pcond ( p 2 u ) (7)

and the conditional probability can be interpreted in terms of mutually exclu-

sive and complementary dichotomic experiments. If we drop in the formula-

tion of Accardi±Fedullo’ s theorem the constraint that A+ and A 2 are

dichotomic and mutually exclusive events [Pcond (A+ | B+) 5 1 2 Pcond (A 2 | B 2 )],

we can reproduce the proof of Accardi±Fedullo partially, deducing three

inequalities instead of four (LeÂveÃque, 1995). This corresponds to the existence
of what we in the next section will call a generalized Kolmogorovian model

(LeÂveÃque, 1995; Durt, 1996a).

6.3. The Generalized Kolmogorovian Model

Definition. Let us consider three experiments, not necessarily dicho-

tomic, A, B, C, with the outcomes A+, A 2 , B+, B 2 , C+, C 2 , and the conditional

probabilities between them. The conditional probabilities are said to admit

a generalized Kolmogorovian model iff
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x There exists a probability space that is characterized by a triple ( V ,

S , m ) where V is a nonempty set, S the s -algebra of subsets of V ,

and m a probability measure on S .

x To each experiment we can associate two measurable subsets of V
(for instance, for A we have A+, A 2 , not necessarily complementary

or disjoint).

x The conditional probability is given by the Bayes formula: P(A+ | B+)

5 m (A+ ù B+)/ m (B+).

The generalization of Accardi±Fedullo’ s theorem is given by the follow-

ing theorem (LeÂveÃque, 1995):

Theorem 9. If the conditional probability is symmetrical in its arguments,

it admits a generalized Kolmogorovian model iff the three conditional proba-

bilities p, q, r fulfill the inequalities

p 1 q 2 r # 1

p 2 q 1 r # 1

2 p 1 q 1 r # 1

The numerical results show (LeÂveÃque, 1995) that these three inequalities are
fulfilled only in the classical (deterministic) case ( u sup 5 e 5 0) for all values

of h . This is confirmed by the following theorem (LeÂveÃque, 1995):

Theorem 10. The conditional probability violates the three inequalities

related to the existence of a generalized Kolmogorovian model for all values

of e inside an open interval lower bounded by zero (the classical case); when
e 5 0, the inequalities are saturated.

This theorem generalizes the corresponding theorem of the previous

section according to which, in the e -model ( h 5 0), the four inequalities are

saturated when e 5 u sup 5 0 and for e inside a small open interval lower

bounded by 0, the conditional probability violates the inequalities related to

the existence of a Kolmogorovian model. From the last theorem, we can
deduce that a generalized Kolmogorovian model exists for the classical condi-

tional probabilities ( e 5 0). In fact we shall do more; we shall explicitly

build such a model.

6.4. The Generalized Kolmogorovian Model of the Classical
Conditional Probability.

For all the classical Aerts-conditional probabilities of the e - h -model,

we can build a generalized Kolmogorovian model, according to the definition

given at the beginning of this section, as follows (Durt, 1996a): Let us take

the sphere as the state space V , and as measure m the normalized surface
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on the sphere. To each experimental result represented by a point A of the

sphere we can associate a measurable subset of V , in fact, the spherical

sector of opening u cl,up around A such that the conditional probability is given
by the Bayes formula: for instance, Pcond (A | B) 5 m (A ù B)/ m (B) 5 (surface

of the intersection of a sector of opening u cl,up around A with a sector of

opening u cl,up around B)/2 p [1 2 cos( u cl,up)]. It is easy to check that, in the

classical case, when e equals zero ( u cl,up 5 p 2 u cl,down), this is the expression

of the conditional probability. This generalized Kolmogorovian model appears

to be Kolmogorovi an in the sense of Accardi and Fedullo only in the symmetri-
cal situation ( h 5 0, the e -model) that we studied in detail in Sections 5.1

and 5.2. The Kolmogorovi an model presented there is a special case of the

generalized Kolmogorovian model presented here, when we impose that

h 5 0.

7. CONCLUSION

The discrepancy between the classical and quantum formalism is obvious

in several structural approaches (lattice theory, algebraic approach, convex

approach, and so on) that were constructed in order to unify (or to clarify

the relation between) these two theories. Although a simple and naive model
like the one we presented here cannot solve the problem of reconciling

quantum and classical approaches, we do believe that it may serve the purpose

of clarifying some of the issues in the debate concerning quantum and classical

probability. A first, perhaps somewhat obvious remark pertains to the differ-

ence between a classical mechanical theory and a classical statistical theory.

In the former, probabilities (if one really wants to introduce them) are either
0 or 1. In the latter, probabilities must be representable as a normalized

measure on a s -algebra of events. In the e -model, we find a direct counterpart

of these concepts: the former corresponds to the transition probability, the

latter to the conditional probability, both taken in the fluctuationless case. A

perhaps more important issue at stake is the question of interpretation of the

violation of the inequalities. This question is also related to Bell’s inequalities
(Bell, 1964), which can be shown to be a set of classically derived inequalities

(Gutkowski-Masotto, 1974; Pitowski, 1989). In the literature one can find

many different attitudes that are being adopted toward the interpretation

of the experimental violation of statistical inequalities. The fact that the

probabilities which appear in quantum experiments (for instance, in Stern±

Gerlach experiments) admit a Hilbert space model but no Kolmogorovian
model in the sense of Accardi and Fedullo is considered by some as an

experimental proof that the probability appearing in quantum mechanics is

not explainable in terms of simple, understandable models. For others it

means that the axioms of Kolmogorov are not fulfilled in nature. In order
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to better understand the relevance of these attitudes, let us develop, on a

metaphorical level, an analogy with the situation in geometry. Imagine three

ª flatº beings living on the surface of a large sphere. Let us assume that they
are convinced of the fact that plane Euclidean geometry is the relevant

geometrical structure of their environment. For instance, all the triangles that

they ever (locally) studied fulfill the condition that the sum of their three

angles is equal to p . Suppose that these three beings do not live close to

each other, but have visited each other quite frequently, thereby establishing

the shortest path to each other. One day they may decide to measure the
angles between the roads they have followed. It is only when all three of

them compare their experimental results that they will find themselves in a

paradoxical situation (the sum of the angles differs from p ). First they might

think that they did not establish the shortest route or did not measure the

angles precisely enough, but by increasing the accuracy of their measurements

they will become more and more convinced something deeper is going on.
Eventually they may come to reject the flat Euclidean structure of their

environment and question the parallel postulate. Later, they might find that

their flat world is the surface of a sphere in a three-dimensional Euclidean

space in which the parallel postulate holds once more. What is now the

analogy with the probabilistic structure that we encounter in our model?
Of course, if we calculate the probability related to a single outcome, this

isolated calculation related to only one experiment follows the Kolmogorov ian

scheme. For instance, the probability that our hidden variable resides in an

interval can be expressed as a measure on a Borel set. The normalization of

this measure (Section 2.1) is due to an implicit use of the Bayes axiom. The

reasoning used to describe the probabilistic behavior of the elastic is classical
and in accordance with Kolmogorovian probability. For instance, it could be

approached with arbitrary accuracy by the probability generated by throwing

a weighted coin. More generally, it can be proved that if we consider only

one observable, in which case all projectors related to the outcome channels

commute, the probability is Kolmogorovian (Ballentine, 1986). Nevertheless,

we are not in contradiction with the conclusions of Accardi and Fedullo,
which primarily classify the collection of probabilities related to different

experiments and hence do not treat the case of a single experiment. If we

pursue the geometrical comparison, the probabilities related to a single out-

come correspond to the local geometry on the sphere which is Euclidean.

If we consider, however, the structure of several different experiments

performed on one entity, each of them with an eventual local lack of knowl-
edge, then all these probabilities together form, in general, a non-Kolmogoro-

vian structure. This is indeed the situation in Hilbert space, where the

probability measure connected to one experiment is Kolmogorovi an, but

the whole probability structure, including the transition and conditional
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probability, connecting different (noncompatible) measurements, is non-

Kolmogorovian.

Let us pursue the geometrical analogy and seek if there is a counterpart

in axiomatic probability of the possibility of embedding of the non-Euclidean

geometry of the sphere inside a three-dimensional geometry. It can be shown

(Bana and Durt, 1997) that if we consider the frequencies obtained by averag-

ing quantum frequencies of different experiments with the frequency of

realization of these experiments, we also obtain a Kolmogorovi an representa-

tion for the probabilities connected to these frequencies. This result provides

the sought counterpart.

The geometrical analogy suggests, if we consider the very fruitful theo-

ries which were obtained thanks to generalizations of the parallel postulate,

that one might try to replace one or more of the axioms of the Kolmogorovian

scheme. The ª easiest way out,º according to Suppes (1966), is to replace the

s -algebra of subsets by the weaker condition of s -additivity. This line of

research was pursued further by Gudder (1969, 1979, 1984, 1988) in what

he calls quantum probability spaces. Other investigators who tried to enlarge

probability theory include Pitowski (1982), concentrating on nonmeasurable

sets, and Accardi (1984), focusing on the Bayes axiom. However, up to the

present we know of no set of axioms with a clear physical interpretation

which solves the problem, the reason being that these extensions are derived

mainly from mathematical principles. Perhaps the closest to what we have

in mind is the operational statistics of Randall and Foulis (1972, 1973, 1976).

Let us now come back to the hidden variable approach. An essential,

nonclassical, feature of our model is that the measuring apparatus is character-

ized by uncontrollable fluctuations, which leads to a situation of lack of

knowledge of the quantum system. Note that our model gives a very simple

counterexample of the commonly accepted opinion according to which proba-

bilities due to a lack of knowledge are necessarily Kolmogorovi an. An essen-

tial difference between our model and statistical mechanics is that we

emphasize the irreducible role played by the measuring apparatus. To sidestep

the assumptions made by Accardi and Fedullo, other options exist. Durt

(1998) has emphasized the role of the preparation as sufficient to evade

Accardi and Fedullo’ s assumption. Czachor (1992) has especially stressed

the importance of the state transition as a result of the measurement. The

reason for incorporating these features is that in quantum mechanics the

observation itself is not a passive act, but rather an active process, literally,

an interaction. This is not the case in Kolmogorov ’ s theory of probability,

where an observation can be thought of as merely a filter on an initial

distribution. In this sense, the violation of classical inequalities shows the

end of an old classical paradigm: the myth of the external observer.
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